MATH 181 Calculus and Analytic Geometry II Fall 2009
Using antidifferentiation to get a power series representation

In this example, we will get a power series representation for tan~! z by antidifferentiating
a known power series representation. Since
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we know that .
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We also know that
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(Recall that we got this result by substituting v = —z?% into the geometric series 1 = Z ub)

Substituting this series representation for into (2), we get
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tan 'z = /Z(—l)km% dx + C. (4)
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Theorem 20 in the text allows us to interchange the order of summation and integration in this

to give
tan 'z = Z /(—1)'%2’7€ dx + C. (5)
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We can move the constant factors out of the integral to get
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tan 'z = 2:(-1)’1‘C / ?* dx + C. (6)
k=0
1
From the power rule, we know /:17% dr = %—Hx%“. Using this in (6) gives us
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To evaluate the constant term C, we note that tan=*0 = 0. Thus C' = 0. So, we have
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Further analysis reveals that this equality is valid for —1 < x < 1.



